History Of Polynomial Equations
History - Page Nine

1894
Johann Gustav Hermes (1846-1912) completes his 12-year effort to calculate the 65537th root of unity using square roots.

1895
Emory McClintock (1840-1916) gives series solutions for all the roots of a polynomial.

1895-1910
Klein, Leonid Lachtin (1858-1927), Paul Gordan (1837-1912), Heinrich Maschke (1853-1908), Arthur Byron Coble (1878-1966), Frank Nelson Cole (1861-1926), and Anders Wiman (1865-1959) develop the fundamentals of how to solve a sextic via Klein's approach.

1915
Robert Hjalmal Mellin (1854-1933) solves an arbitrary polynomial equation with Mellin integrals.

1 - History
2 - Quadratics
3 - Cubic
4 - Quartic
5 - Quintic
6 - Appendix

1905-1925
R. Birkeland shows that the roots of an algebraic equation can be expressed using hypergeometric functions in several variables. Alfred Capelli (1855-1910), Guiseppe Belardinelli (1894-?), and Salvatore Pincherle (1853-1936) express related ideas.

1926
Paul Emile Appell (1855-1930) and Joseph Marie Kampe de Feriet (1893-1982) recognize the hypergeometric functions in the series solution of the quintic.

1932
Andre Bloch (1893-1948) and George Polya (1887-1985) investigate the zeros of polynomials of arbitrary degree with random coefficients.

1934
Richard Brauer (1901-1977) analyzes Klein's solution of the quintic using the theory of fields.
Previous PageTo Page OneTo Page TwoTo Page ThreeTo Page FourTo Page FiveTo Page SixTo Page SevenTo Page EightTo Page NineTo Page TenNext Page
by thomas m. bösel @ www.vimagic.de for University Of Adelaide - History Of Mathematics 2002